Skip to main content

Proxy Config.yaml

Set model list, api_base, api_key, temperature & proxy server settings (master-key) on the config.yaml.

Param NameDescription
model_listList of supported models on the server, with model-specific configs
router_settingslitellm Router settings, example routing_strategy="least-busy" see all
litellm_settingslitellm Module settings, example litellm.drop_params=True, litellm.set_verbose=True, litellm.api_base, litellm.cache see all
general_settingsServer settings, example setting master_key: sk-my_special_key
environment_variablesEnvironment Variables example, REDIS_HOST, REDIS_PORT

Complete List: Check the Swagger UI docs on <your-proxy-url>/#/config.yaml (e.g. http://0.0.0.0:8000/#/config.yaml), for everything you can pass in the config.yaml.

Quick Start

Set a model alias for your deployments.

In the config.yaml the model_name parameter is the user-facing name to use for your deployment.

In the config below requests with:

  • model=vllm-models will route to openai/facebook/opt-125m.
  • model=gpt-3.5-turbo will load balance between azure/gpt-turbo-small-eu and azure/gpt-turbo-small-ca
model_list:
- model_name: gpt-3.5-turbo # user-facing model alias
litellm_params: # all params accepted by litellm.completion() - https://docs.litellm.ai/docs/completion/input
model: azure/gpt-turbo-small-eu
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
rpm: 6 # Rate limit for this deployment: in requests per minute (rpm)
- model_name: bedrock-claude-v1
litellm_params:
model: bedrock/anthropic.claude-instant-v1
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_CA"
rpm: 6
- model_name: vllm-models
litellm_params:
model: openai/facebook/opt-125m # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:8000
rpm: 1440
model_info:
version: 2

litellm_settings: # module level litellm settings - https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py
drop_params: True
set_verbose: True

general_settings:
master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)

Step 2: Start Proxy with config

$ litellm --config /path/to/config.yaml

Using Proxy - Curl Request, OpenAI Package, Langchain, Langchain JS

Calling a model group

Sends request to model where model_name=gpt-3.5-turbo on config.yaml.

If multiple with model_name=gpt-3.5-turbo does Load Balancing

curl --location 'http://0.0.0.0:8000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'

Save Model-specific params (API Base, API Keys, Temperature, Headers etc.)

You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.

All input params

Step 1: Create a config.yaml file

model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
azure_ad_token: eyJ0eXAiOiJ
- model_name: gpt-4-team2
litellm_params:
model: azure/gpt-4
api_key: sk-123
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
- model_name: mistral-7b
litellm_params:
model: ollama/mistral
api_base: your_ollama_api_base
headers: {
"HTTP-Referer": "litellm.ai",
"X-Title": "LiteLLM Server"
}

Step 2: Start server with config

$ litellm --config /path/to/config.yaml

Load API Keys

Load API Keys from Environment

If you have secrets saved in your environment, and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment.

os.environ["AZURE_NORTH_AMERICA_API_KEY"] = "your-azure-api-key"
model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key: os.environ/AZURE_NORTH_AMERICA_API_KEY

See Code

s/o to @David Manouchehri for helping with this.

Load API Keys from Azure Vault

  1. Install Proxy dependencies
$ pip install 'litellm[proxy]' 'litellm[extra_proxy]'
  1. Save Azure details in your environment
export["AZURE_CLIENT_ID"]="your-azure-app-client-id"
export["AZURE_CLIENT_SECRET"]="your-azure-app-client-secret"
export["AZURE_TENANT_ID"]="your-azure-tenant-id"
export["AZURE_KEY_VAULT_URI"]="your-azure-key-vault-uri"
  1. Add to proxy config.yaml
model_list: 
- model_name: "my-azure-models" # model alias
litellm_params:
model: "azure/<your-deployment-name>"
api_key: "os.environ/AZURE-API-KEY" # reads from key vault - get_secret("AZURE_API_KEY")
api_base: "os.environ/AZURE-API-BASE" # reads from key vault - get_secret("AZURE_API_BASE")

general_settings:
use_azure_key_vault: True

You can now test this by starting your proxy:

litellm --config /path/to/config.yaml

Set Custom Prompt Templates

LiteLLM by default checks if a model has a prompt template and applies it (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the config.yaml:

Step 1: Save your prompt template in a config.yaml

# Model-specific parameters
model_list:
- model_name: mistral-7b # model alias
litellm_params: # actual params for litellm.completion()
model: "huggingface/mistralai/Mistral-7B-Instruct-v0.1"
api_base: "<your-api-base>"
api_key: "<your-api-key>" # [OPTIONAL] for hf inference endpoints
initial_prompt_value: "\n"
roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
final_prompt_value: "\n"
bos_token: "<s>"
eos_token: "</s>"
max_tokens: 4096

Step 2: Start server with config

$ litellm --config /path/to/config.yaml

Setting Embedding Models

See supported Embedding Providers & Models here

Use Sagemaker, Bedrock, Azure, OpenAI, XInference

Create Config.yaml

Here's how to route between GPT-J embedding (sagemaker endpoint), Amazon Titan embedding (Bedrock) and Azure OpenAI embedding on the proxy server:

model_list:
- model_name: sagemaker-embeddings
litellm_params:
model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
- model_name: amazon-embeddings
litellm_params:
model: "bedrock/amazon.titan-embed-text-v1"
- model_name: azure-embeddings
litellm_params:
model: "azure/azure-embedding-model"
api_base: "os.environ/AZURE_API_BASE" # os.getenv("AZURE_API_BASE")
api_key: "os.environ/AZURE_API_KEY" # os.getenv("AZURE_API_KEY")
api_version: "2023-07-01-preview"

general_settings:
master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token

Start Proxy

litellm --config config.yaml

Make Request

Sends Request to deployed-codebert-base

curl --location 'http://0.0.0.0:8000/embeddings' \
--header 'Content-Type: application/json' \
--data ' {
"model": "deployed-codebert-base",
"input": ["write a litellm poem"]
}'

Router Settings

Use this to configure things like routing strategy.

router_settings:
routing_strategy: "least-busy"

model_list: # will route requests to the least busy ollama model
- model_name: ollama-models
litellm_params:
model: "ollama/mistral"
api_base: "http://127.0.0.1:8001"
- model_name: ollama-models
litellm_params:
model: "ollama/codellama"
api_base: "http://127.0.0.1:8002"
- model_name: ollama-models
litellm_params:
model: "ollama/llama2"
api_base: "http://127.0.0.1:8003"

Max Parallel Requests

To rate limit a user based on the number of parallel requests, e.g.: if user's parallel requests > x, send a 429 error if user's parallel requests <= x, let them use the API freely.

set the max parallel request limit on the config.yaml (note: this expects the user to be passing in an api key).

general_settings:
max_parallel_requests: 100 # max parallel requests for a user = 100